You're researching friendships between groups of n new college students where each student is distinctly numbered from 1 to n. At the beginning of the semester, no student knew any other student; instead, they met and formed individual friendships as the semester went on. The friendships between students are:

- Bidirectional. If student a is friends with student b, then student b is also friends with student a.
- Transitive. If student a is friends with student b and student b is friends with student c, then student a is friends with student c. In other words, two students are considered to be friends even if they are only indirectly linked through a network of mutual (i.e., directly connected) friends.

The purpose of your research is to find the maximum total value of a group's friendships, denoted by total. Each time a direct friendship forms between two students, you sum the number of friends that each of the n students has and add the sum to total.

You are given q queries, where each query is in the form of an unordered list of m distinct direct friendships between n students. For each query, find the maximum value of total among all possible orderings of formed friendships and print it on a new line.

Input Format

The first line contains an integer, q, denoting the number of queries. The subsequent lines describe each query in the following format:

1. The first line contains two space-separated integers describing the respective values of n (the number of students) and m (the number of distinct direct friendships).
2. Each of the m subsequent lines contains two space-separated integers describing the respective values of x and y (where $x \neq y$) describing a friendship between student x and student y.

Constraints

- $1 \leq q \leq 16$
- $1 \leq n \leq 10^{5}$
- $1 \leq m \leq \min \left(\frac{n \cdot(n-1)}{2}, 2 \times 10^{5}\right)$

Output Format

For each query, print the maximum value of total on a new line.

Sample Input 0

Sample Output 0

32

Explanation 0

The value of total is maximal if the students form the $m=4$ direct friendships in the following order:

1. Students 1 and 2 become friends:

We then sum the number of friends that each student has to get $1+1+0+0+0=2$.
2. Students 2 and 4 become friends:

We then sum the number of friends that each student has to get $2+2+0+2+0=6$.
3. Students 3 and 4 become friends:

We then sum the number of friends that each student has to get $3+3+3+3+0=12$.
4. Students 3 and 2 become friends:

We then sum the number of friends that each student has to get $3+3+3+3+0=12$.
When we add the sums from each step, we get total $=2+6+12+12=32$. We then print 32 on a new line.

