Variable Sized Arrays

Consider an n-element array, a, where each index i in the array contains a reference to an array of k_{i} integers (where the value of k_{i} varies from array to array). See the Explanation section below for a diagram.

Given a, you must answer q queries. Each query is in the format $i j$, where i denotes an index in array a and j denotes an index in the array located at $a[i]$. For each query, find and print the value of element j in the array at location $a[i]$ on a new line.

Click here to know more about how to create variable sized arrays in $\mathrm{C}++$.

Input Format

The first line contains two space-separated integers denoting the respective values of n (the number of variable-length arrays) and q (the number of queries).
Each line i of the n subsequent lines contains a space-separated sequence in the format ka[i]o a[i]
... a[i] ${ }_{k-1}$ describing the k-element array located at $a[i]$.
Each of the q subsequent lines contains two space-separated integers describing the respective values of i (an index in array a) and j (an index in the array referenced by $a[i]$) for a query.

Constraints

- $1 \leq n \leq 10^{5}$
- $1 \leq q \leq 10^{5}$
- $1 \leq k \leq 3 \cdot 10^{5}$
- $n \leq \sum k \leq 3 \cdot 10^{5}$
- $0 \leq i<n$
- $0 \leq j<k$
- All indices in this challenge are zero-based.
- All the given numbers are non negative and are not greater than 10^{6}

Output Format

For each pair of i and j values (i.e., for each query), print a single integer that denotes the element located at index j of the array referenced by $a[i]$. There should be a total of q lines of output.

Sample Input

```
2
3}115
1 2 8 9 3
```


Sample Output

5
9

Explanation

The diagram below depicts our assembled Sample Input:

We perform the following $q=2$ queries:

1. Find the array located at index $i=0$, which corresponds to $a[0]=[1,5,4]$. We must print the value at index $j=1$ of this array which, as you can see, is 5 .
2. Find the array located at index $i=1$, which corresponds to $a[1]=[1,2,8,9,3]$. We must print the value at index $j=3$ of this array which, as you can see, is 9 .
