You have a rooted tree with n vertices numbered from 1 through n where the root is vertex 1 .
You are given m triplets, the $j^{t h}$ triplet is denoted by three integers u_{j}, v_{j}, c_{j}. The $j^{\text {th }}$ triplet represents a simple path in the tree with endpoints in u_{i} and v_{i} such that u_{j} is ancestor of v_{j}. The cost of the path is c_{j}.

You have to select a subset of the paths such that the sum of path costs is maximum and the $i^{\text {th }}$ edge of the tree belongs to at most d_{i} paths from the subset. Print the sum as the output.

Input Format

The first line contains a single integer, T, denoting the number of testcases. Each testcase is defined as follows:

- The first line contains two space-separated integers, n (the number of vertices) and m (the number of paths), respectively.
- Each line i of the $n-1$ subsequent lines contains three space-separated integers describing the respective values of a_{i}, b_{i}, and d_{i} where $\left(a_{i}, b_{i}\right)$ is an edge in the tree and d_{i} is maximum number of paths which can include this edge.
- Each line of the m subsequent lines contains three space-separated integers describing the respective values of u_{j}, v_{j}, and $c_{j}\left(u_{j} \neq v_{j}\right)$ that define the $j^{\text {th }}$ path and its cost.

Constraints

- Let M be the sum of m over all the trees.
- Let D be the sum of $n \times m$ over all the trees.
- $1 \leq T \leq 10^{3}$
- $1 \leq M, m \leq 10^{3}$
- $1 \leq D, n \leq 5 \times 10^{5}$
- $1 \leq c_{i} \leq 10^{9}$
- $1 \leq d_{j} \leq m$

Output Format

You must print T lines, where each line contains a single integer denoting the answer for the corresponding testcase.

Sample Input

```
1

\section*{Sample Output}

\section*{37}

\section*{Explanation}


One of the possible subsets contains paths \(1,2,4,5,6,7\). Its total cost is \(3+5+8+10+5+6=37\).```

