Given an array of integers $Y=\left[y_{1}, y_{2}, \ldots, y_{n}\right]$, we have n line segments, such that, the endpoints of $i^{\text {th }}$ segment are $(i, 0)$ and $\left(i, y_{i}\right)$. Imagine that from the top of each segment a horizontal ray is shot to the left, and this ray stops when it touches another segment or it hits the y-axis. We construct an array of n integers, $\left[v_{1}, v_{2}, \ldots, v_{n}\right]$, where v_{i} is equal to length of ray shot from the top of segment i. We define $V\left(y_{1}, y_{2}, \ldots, y_{n}\right)=v_{1}+v_{2}+\ldots+v_{n}$.

For example, if we have $Y=[3,2,5,3,3,4,1,2]$, then $v_{1}, v_{2}, \ldots, v_{8}=[1,1,3,1,1,3,1,2]$, as shown in the picture below:

For each permutation p of $[1,2, \ldots, n]$, we can calculate $V\left(y_{p_{1}}, y_{p_{2}}, \ldots, y_{p_{n}}\right)$. If we choose a uniformly random permutation p of $[1,2, \ldots, n]$, what is the expected value of $V\left(y_{p_{1}}, y_{p_{2}}, \ldots, y_{p_{n}}\right)$?

Input Format

The first line contains a single integer $T(1<=T<=100) . T$ test cases follow.
The first line of each test-case is a single integer $N(1<=n<=50)$, and the next line contains positive integer numbers $y_{1}, y_{2} \ldots, y_{n}$ separated by a single space $\left(0<y_{i}<=1000\right)$.

Output Format

For each test-case output expected value of $V\left(y_{p_{1}}, y_{p_{2}}, \ldots, y_{p_{n}}\right)$, rounded to two digits after the decimal point.

Sample Input

```
6
3
2 3
3 
2 3
244
0}101010\quad5 1
6
1 2 3 4 5 6
```


Sample Output

Explanation

Case 1: We have $V(1,2,3)=1+2+3=6, V(1,3,2)=1+2+1=4, V(2,1,3)=1+1+3=5$, $V(2,3,1)=1+2+1=4, V(3,1,2)=1+1+2=4, V(3,2,1)=1+1+1=3$.
Average of these values is 4.33 .
Case 2: No matter what the permutation is, $V\left(y_{p_{1}}, y_{p_{2}}, y_{p_{3}}\right)=1+1+1=3$, so the answer is 3.00 .
Case 3: $V\left(y_{1}, y_{2}, y_{3}\right)=V\left(y_{2}, y_{1}, y_{3}\right)=5$,
$V\left(y_{1}, y_{3}, y_{2}\right)=V\left(y_{2}, y_{3}, y_{1}\right)=4$,
$V\left(y_{3}, y_{1}, y_{2}\right)=V\left(y_{3}, y_{2}, y_{1}\right)=3$,
and average of these values is 4.00 .

