Vertical Sticks

HackerRank

Given an array of integers $Y = [y_1, y_2, \ldots, y_n]$, we have n line segments, such that, the endpoints of i^{th} segment are (i, 0) and (i, y_i) . Imagine that from the top of each segment a horizontal ray is shot to the left, and this ray stops when it touches another segment or it hits the y-axis. We construct an array of n integers, $[v_1, v_2, \ldots, v_n]$, where v_i is equal to length of ray shot from the top of segment i. We define $V(y_1, y_2, \ldots, y_n) = v_1 + v_2 + \ldots + v_n$.

For example, if we have Y = [3, 2, 5, 3, 3, 4, 1, 2], then $v_1, v_2, \ldots, v_8 = [1, 1, 3, 1, 1, 3, 1, 2]$, as shown in the picture below:

For each permutation p of [1, 2, ..., n], we can calculate $V(y_{p_1}, y_{p_2}, ..., y_{p_n})$. If we choose a uniformly random permutation p of [1, 2, ..., n], what is the expected value of $V(y_{p_1}, y_{p_2}, ..., y_{p_n})$?

Input Format

The first line contains a single integer T (1 <=T<= 100). T test cases follow.

The first line of each test-case is a single integer N (1 <= n <= 50), and the next line contains positive integer numbers y_1, y_2, \ldots, y_n separated by a single space ($0 < y_i <= 1000$).

Output Format

For each test-case output expected value of $V(y_{p_1}, y_{p_2}, \ldots, y_{p_n})$, rounded to two digits after the decimal point.

Sample Input

Sample Output

4.33 3.00 4.00 6.00 5.80 11.15

Explanation

Case 1: We have V(1,2,3) = 1 + 2 + 3 = 6, V(1,3,2) = 1 + 2 + 1 = 4, V(2,1,3) = 1 + 1 + 3 = 5, V(2,3,1) = 1 + 2 + 1 = 4, V(3,1,2) = 1 + 1 + 2 = 4, V(3,2,1) = 1 + 1 + 1 = 3. Average of these values is 4.33. **Case 2:** No matter what the permutation is, $V(y_{p_1}, y_{p_2}, y_{p_3}) = 1 + 1 + 1 = 3$, so the answer is 3.00. **Case 3:** $V(y_1, y_2, y_3) = V(y_2, y_1, y_3) = 5$, $V(y_1, y_3, y_2) = V(y_2, y_3, y_1) = 4$, $V(y_3, y_1, y_2) = V(y_3, y_2, y_1) = 3$, and average of these values is 4.00.