A war has broken down between Vim and Emacs. Gedit, being Vim's ally, is captured by Emacs as a prisoner of war and it is up to Vim to rescue him by defeating Emacs.

For this task, Vim has to assemble an army of appropriate skills. He can choose a non-empty subset of soldiers from a set of $N$ soldiers (numbered from 1 to $N$ ). Each soldier has some subset of skills out of $M$ different skills (numbered from 1 to $M$ ). The skill-set of an army is the union of skill-sets of its constituent soldiers. To win the war, Vim needs to know how many different subsets of soldiers satisfy his skill-set requirement. Since the answer can be huge, print it modulo $10^{9}+7$.

Note : The chosen army's skill-set must exactly match the skill-set requirement of Vim (i.e no extra skills must be present in the army's skill-set than what is required).

## Input Format

The first line contains $N$ and $M$, the number of soldiers to choose from and the number of different skills possible respectively.
The next $N$ lines contain $M$ boolean characters each. If the $j^{\text {th }}$ character of the $i^{t h}$ line is 1 , then the $i^{t h}$ soldier possess the $j^{\text {th }}$ skill and if it is 0 , then not.
The last line contains $M$ boolean characters denoting the requirement skill-set of Vim where the $j^{\text {th }}$ character being 1 signifies that Vim wants the $j^{\text {th }}$ skill to be present in his final army and not, otherwise.

## Constraints

$1 \leq N \leq 10^{5}$
$1 \leq M \leq 20$

## Output Format

Output in a single line the required answer, as explained above.

## Sample Input

```
4
00
10
01
1 1
1 1
```


## Sample Output

```
    1 0
```


## Explanation

Vim wants both the skills to be present in his selected army. Hence, he can choose the following subsets of soldiers:

1. $1,2,3,4$
2. $1,2,4$
3. $1,3,4$
4. $2,3,4$
5. 1,4
6. 2,4
7. 3,4
8. 4
9. $1,2,3$
10. 2,3
