Wet Shark and Two Subsequences

One day, Wet Shark was given an array $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$. As always, he started playing with its subsequences.

When you came to know about this habit, you presented him a task of finding all pairs of subsequences, (A, B), which satisfies all of the following constraints. We will represent a pair of subsequence as $A=\left\{x_{a_{1}}, x_{a_{2}}, \ldots, x_{a_{n}}\right\}$ and $B=\left\{x_{b_{1}}, x_{b_{2}}, \ldots, x_{b_{n}}\right\}$

- A and B must be of same length, i.e., $|A|=|B|$.
- $\sum_{i=1}^{n}\left(x_{a_{i}}+x_{b_{i}}\right)=r$
- $\sum_{i=1}^{n}\left(x_{a_{i}}-x_{b_{i}}\right)=s$

Please help Wet Shark determine how many possible subsequences A and B can exist. Because the number of choices may be big, output your answer modulo $10^{9}+7=1000000007$.

Note:

- Two segments are different if there's exists at least one index i such that element x_{i} is present in exactly one of them.
- Both subsequences can overlap each other.
- Subsequences do not necessarily have to be distinct

Input Format

The first line consists of 3 space-separated integers m, r, s, where m denotes the length of the original array, X, and r and s are as defined above.
The next line contains m space-separated integers, $x_{1}, x_{2}, \ldots, x_{m}$, representing the elements of X.

Constraints

- $1 \leq m \leq 100$
- $0 \leq r, s \leq 2000$
- $1 \leq x_{i} \leq 2000$

Output Format

Output total number of pairs of subsequences, (A, B), satisfying the above conditions. As the number can be large, output it's modulo $10^{9}+7=1000000007$

Sample Input 0

Sample Output 0

3

Explanation 0

For array $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}=\{1,1,1,4\}$ there are three pairs of subsequences:

1. $A=\left\{x_{4}\right\}=\{4\} ; B=\left\{x_{1}\right\}=\{1\}$
2. $A=\left\{x_{4}\right\}=\{4\} ; B=\left\{x_{2}\right\}=\{1\}$
3. $A=\left\{x_{4}\right\}=\{4\} ; B=\left\{x_{3}\right\}=\{1\}$
