Johnny is playing with a large binary number, B. The number is so large that it needs to be compressed into an array of integers, A, where the values in even indices ($0,2,4, \ldots$) represent some number of consecutive 1 bits and the values in odd indices ($1,3,5, \ldots$) represent some number of consecutive 0 bits in alternating substrings of B.

For example, suppose we have array $A=\{4,1,3,2,4\}$. A_{0} represents " 1111 ", A_{1} represents " 0 ", A_{2} represents " 111 ", A_{3} represents " 00 ", and A_{4} represents " 1111 ". The number of consecutive binary characters in the $i^{\text {th }}$ substring of B corresponds to integer A_{i}, as shown in this diagram:

When we assemble the sequential alternating sequences of 1 's and 0 's, we get $B=" 11110111001111$ ".
We define $\operatorname{setCount}(B)$ to be the number of 1 's in a binary number, B. Johnny wants to find a binary number, D, that is the smallest binary number $>B$ where $\operatorname{setCount}(B)=\operatorname{setCount}(D)$. He then wants to compress D into an array of integers, C (in the same way that integer array A contains the compressed form of binary string B).

Johnny isn't sure how to solve the problem. Given array A, find integer array C and print its length on a new line. Then print the elements of array C as a single line of space-separated integers.

Input Format

The first line contains a single positive integer, T, denoting the number of test cases. Each of the $2 T$ subsequent lines describes a test case over 2 lines:

1. The first line contains a single positive integer, n, denoting the length of array A.
2. The second line contains n positive space-separated integers describing the respective elements in integer array A (i.e., $A_{0}, A_{1}, \ldots, A_{n-1}$).

Constraints

- $1 \leq T \leq 100$
- $1 \leq n \leq 10$

Subtasks

- For a 50% score, $1 \leq A_{i} \leq 10^{4}$.
- For a 100% score, $1 \leq A_{i} \leq 10^{18}$.

Output Format

For each test case, print the following 2 lines:

1. Print the length of integer array C (the array representing the compressed form of binary integer D) on a new line.
2. Print each element of C as a single line of space-separated integers.

It is guaranteed that a solution exists.

Sample Input 0

\square

Sample Output 0

7
$\begin{array}{lllllll}4 & 1 & 3 & 1 & 1 & 1 & 3\end{array}$

Explanation 0

$A=\{4,1,3,2,4\}$, which expands to $B=11110111001111$. We then find $\operatorname{setCount}(B)=11$. The smallest binary number $>B$ which also has eleven 1 's is $D=11110111010111$. This can be reduced to the integer array $C=\{4,1,3,1,1,1,3\}$. This is demonstrated by the following figure:

Having found C, we print its length (7) as our first line of output, followed by the space-separated elements in C as our second line of output.

