Xorq has invented an encryption algorithm which uses bitwise XOR operations extensively. This encryption algorithm uses a sequence of non-negative integers $x=[x[1], x[2] \cdots x[n]]$ as its key. To implement this algorithm efficiently, Xorq needs to find maximum value of $\left(a \oplus x_{j}\right)$ for given integers a, l and r, such that, $l \leqslant j \leqslant r$. Help Xorq implement this function.

For example, $x=[3,5,9], a=4, l=1$ and $r=3$. We test each $x[j]$ for all values of j between l and r inclusive:

j	$x[j]$	$x[j] \wedge 4$
1	3	7
2	5	1
3	9	13

Our maximum value is 13 .

Function Description

Complete the xorKey function in the editor below. It should return an integer array where each value is the response to a query.
xorKey has the following parameters:

- x : a list of integers
- queries: a two dimensional array where each element is an integer array that consists of $a[i], l[i], r[i]$ for the $i^{\text {th }}$ query at indices 0,1 and 2 respectively.

Input Format

The first line contains an integer t, the number of test cases.
The first line of each test case contains two space-separated integers n and q, the size of the integer array x and the number of queries against the test case.
The next line contains n space-separated integers $x[j]$.
Each of next q lines describes a query which consists of three integers $a[i], l[i]$ and $r[i]$.

Constraints

$1 \leq n \leq 100000$
$1 \leq q \leq 50000$
$0 \leq x[j], a[i] \leq 2^{15}$
$1 \leq l[i], r[i] \leq n$

Output Format

For each query, print the maximum value for $(a[i] \oplus x[j])$, such that, $l[i] \leqslant j \leqslant r[i]$ on a new line.

Sample Input 0

```
1
15 8
1
10 6 10
102377
3358
182 5 10
181 1 13
5 10 15
998 9
33 10 14
```


Sample Output 0

```
13
1016
4 1
191
191
15
107
4 7
```


Explanation 0

- First Query (10 6 10): $x_{6} \oplus 10=12, x_{7} \oplus 10=13, x_{8} \oplus 10=2, x_{9} \oplus 10=3, x_{10} \oplus 10=0$. The maximum is 13 .
- Second Query (1023 7 7): $x_{7} \oplus 1023=1016$
- Third Query (33 5 8) : $x_{5} \oplus 33=36, x_{6} \oplus 33=39, x_{7} \oplus 33=38, x_{8} \oplus 33=41$
- Fourth Query (182 5 10):
$x_{5} \oplus 182=179, x_{6} \oplus 182=176, x_{7} \oplus 182=177, x_{8} \oplus 182=190, x_{9} \oplus 182=191, x_{10} \oplus 182=188$

