Beautiful Quadruples

We call an quadruple of positive integers, (W, X, Y, Z), beautiful if the following condition is true:

$$
W \oplus X \oplus Y \oplus Z \neq 0
$$

Note: \oplus is the bitwise XOR operator.
Given A, B, C, and D, count the number of beautiful quadruples of the form (W, X, Y, Z) where the following constraints hold:

- $1 \leq W \leq A$
- $1 \leq X \leq B$
- $1 \leq Y \leq C$
- $1 \leq Z \leq D$

When you count the number of beautiful quadruples, you should consider two quadruples as same if the following are true:

- They contain same integers.
- Number of times each integers occur in the quadruple is same.

For example $(1,1,1,2)$ and $(1,1,2,1)$ should be considered as same.

Input Format

A single line with four space-separated integers describing the respective values of A, B, C, and D.

Constraints

- $1 \leq A, B, C, D \leq 3000$
- For 50% of the maximum score, $1 \leq A, B, C, D \leq 50$

Output Format

Print the number of beautiful quadruples.

Sample Input

```
1234
```


Sample Output

Explanation

There are 11 beautiful quadruples for this input:

1. $(1,1,1,2)$
2. $(1,1,1,3)$
3. $(1,1,1,4)$
4. $(1,1,2,3)$
5. $(1,1,2,4)$
6. $(1,1,3,4)$
7. $(1,2,2,2)$
8. $(1,2,2,3)$
9. $(1,2,2,4)$
10. $(1,2,3,3)$
11. $(1,2,3,4)$

Thus, we print 11 as our output.
Note that $(1,1,1,2)$ is same as $(1,1,2,1)$.

