Xor-sequence

An array, A, is defined as follows:

- $A_{0}=0$
- $A_{x}=A_{x-1} \oplus x$ for $x>0$, where \oplus is the symbol for XOR

You will be given a left and right index $l r$. You must determine the XOR sum of the segment of A as $A[l] \oplus A[l+1] \oplus \ldots \oplus A[r-1] \oplus A[r]$.

For example, $A=[0,1,3,0,4,1,7,0,8]$. The segment from $l=1$ to $r=4$ sums to $1 \oplus 3 \oplus 0 \oplus 4=6$. Print the answer to each question.

Function Description

Complete the xorSequence function in the editor below. It should return the integer value calculated.
xorSequence has the following parameter(s):

- I : the lower index of the range to sum
- r : the higher index of the range to sum

Input Format

The first line contains an integer q, the number of questions.
Each of the next q lines contains two space-separated integers, $l[i]$ and $r[i]$, the inclusive left and right indexes of the segment to query.

Constraints

$$
1 \leq q \leq 10^{5}
$$

$1 \leq l[i] \leq r[i] \leq 10^{15}$

Output Format

On a new line for each test case, print the $X O R$-Sum of A 's elements in the inclusive range between indices $l[i]$ and $r[i]$.

Sample Input 0

\square

Sample Output 0

Explanation 0

The beginning of our array looks like this: $A=[0,1,3,0,4,1,7,0,8,1,11, \ldots]$
Test Case 0:
$3 \oplus 0 \oplus 4=7$
Test Case 1:
$3 \oplus 0 \oplus 4 \oplus 1 \oplus 7 \oplus 0 \oplus 8=9$
Test Case 2:
$1 \oplus 7 \oplus 0 \oplus 8 \oplus 1=15$

Sample Input 1

```
3
3 5
46
15 20
```


Sample Output 1

```
5
2
22
```


Explanation 1

$A=[0,1,3,0,4,1,7,0,8,1,11,0,12,1,15,0,16,1,19,0,20,1,23,0,24,1, \ldots]$. Perform the xor sum on each interval:
$3-5: 0 \oplus 4 \oplus 1=5$
$4-6: 4 \oplus 1 \oplus 7=2$
$15-20: 0 \oplus 16 \oplus 1 \oplus 19 \oplus 0 \oplus 20=22$

