Xoring Ninja

An XOR operation on a list is defined here as the $\operatorname{xor}(\oplus)$ of all its elements (e.g.: $X O R(\{A, B, C\})=A \oplus B \oplus C)$.

The $X o r S u m$ of set $a r r$ is defined here as the sum of the $X O R$ s of all non-empty subsets of arr known as $\operatorname{arr}^{\prime}$. The set $a r r^{\prime}$ can be expressed as:
$\operatorname{XorSum}(\operatorname{arr})=\sum_{i=1}^{2^{n}-1} X O R\left(\operatorname{arr}_{i}^{\prime}\right)=X O R\left(\operatorname{arr}_{1}^{\prime}\right)+X O R\left(\operatorname{arr}_{2}^{\prime}\right)+\cdots+X O R\left(\operatorname{arr}_{2^{n}-2}^{\prime}\right)+X O R\left(\operatorname{arr}_{2^{n}-1}^{\prime}\right)$
For example: Given set $\operatorname{arr}=\left\{n_{1}, n_{2}, n_{3}\right\}$

- The set of possible non-empty subsets is:

$$
\operatorname{arr}^{\prime}=\left\{\left\{n_{1}\right\},\left\{n_{2}\right\},\left\{n_{3}\right\},\left\{n_{1}, n_{2}\right\},\left\{n_{1}, n_{3}\right\},\left\{n_{2}, n_{3}\right\},\left\{n_{1}, n_{2}, n_{3}\right\}\right\}
$$

- The XorSum of these non-empty subsets is then calculated as follows:
$\operatorname{XorSum}(\operatorname{arr})=n_{1}+n_{2}+n_{3}+\left(n_{1} \oplus n_{2}\right)+\left(n_{1} \oplus n_{3}\right)+\left(n_{2} \oplus n_{3}\right)+\left(n_{1} \oplus n_{2} \oplus n_{3}\right)$
Given a list of n space-separated integers, determine and print XorSum $\%\left(10^{9}+7\right)$.
For example, $\operatorname{arr}=\{3,4\}$. There are three possible subsets, $\operatorname{arr}^{\prime}=\{\{3\},\{4\},\{3,4\}\}$. The XOR of arr $^{\prime}[1]=3$, of $a r r^{\prime}[2]=4$ and of $\operatorname{arr}[3]=3 \oplus 4=7$. The XorSum is the sum of these: $3+4+7=14$ and $14 \%\left(10^{9}+7\right)=14$.

Note: The cardinality of powerset (n) is 2^{n}, so the set of non-empty subsets of set arr of size n contains $2^{n}-1$ subsets.

Function Description

Complete the xoringNinja function in the editor below. It should return an integer that represents the XorSum of the input array, modulo $\left(10^{9}+7\right)$.
xoringNinja has the following parameter(s):

- arr: an integer array

Input Format

The first line contains an integer T, the number of test cases.
Each test case consists of two lines:

- The first line contains an integer n, the size of the set arr.
- The second line contains n space-separated integers $\operatorname{arr}[i]$.

Constraints

$1 \leq T \leq 5$
$1 \leq n \leq 10^{5}$
$0 \leq \operatorname{arr}[i] \leq 10^{9}, 1 \leq i \leq n$

For each test case, print its XorSum $\%\left(10^{9}+7\right)$ on a new line. The $i^{\text {th }}$ line should contain the output for the $i^{\text {th }}$ test case.

Sample Input 0

```
1
123
```


Sample Output 0

```
    1 2
```


Explanation 0

The input set, $S=\{1,2,3\}$, has 7 possible non-empty subsets:
$S^{\prime}=\{\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}\}$.
We then determine the $X O R$ of each subset in S^{\prime} :
$X O R(\{1\})=1$
$X O R(\{2\})=2$
$X O R(\{3\})=3$
$X O R(\{1,2\})=1 \oplus 2=3$
$X O R(\{2,3\})=2 \oplus 3=1$
$X O R(\{1,3\}=1 \oplus 3=2$
$X O R(\{1,2,3\}=1 \oplus 2 \oplus 3=0$
Then sum the results of the $X O R$ of each individual subset in S^{\prime}, resulting in $\operatorname{XorSum}=12$ and $12 \%\left(10^{9}+7\right)=12$.

Sample Input 1

```
2
4
1248
123 5 100
```


Sample Output 1

