Project Euler \#6: Sum square difference

This problem is a programming version of Problem 6 from projecteuler.net
The sum of the squares of the first ten natural numbers is, $1^{2}+2^{2}+\ldots+10^{2}=385$. The square of the sum of the first ten natural numbers is, $(1+2+\cdots+10)^{2}=55^{2}=3025$. Hence the absolute difference between the sum of the squares of the first ten natural numbers and the square of the sum is $3025-385=2640$.

Find the absolute difference between the sum of the squares of the first N natural numbers and the square of the sum.

Input Format

First line contains T that denotes the number of test cases. This is followed by T lines, each containing an integer, N.

Constraints

- $1 \leqslant T \leqslant 10^{4}$
- $1 \leqslant N \leqslant 10^{4}$

Output Format

Print the required answer for each test case.
Sample Input 0

```
2
3
10
```


Sample Output 0

```
22
```

2640

Explanation 0

- For $N=3,(1+2+3)^{2}-\left(1^{2}+2^{2}+3^{2}\right) \Rightarrow 22$
- For $N=10,(1+2+\cdots+10)^{2}-\left(1^{2}+2^{2}+\cdots+10^{2}\right) \Rightarrow 2640$

