This problem is a programming version of Problem 7 from projecteuler.net
By listing the first six prime numbers: $2,3,5,7,11$ and 13 , we can see that the $6^{t h}$ prime is 13 . What is the $N^{t h}$ prime number?

Input Format

First line contains T that denotes the number of test cases. This is followed by T lines, each containing an integer, N.

Constraints

- $1 \leqslant T \leqslant 10^{3}$
- $1 \leqslant N \leqslant 10^{4}$

Output Format

Print the required answer for each test case.
Sample Input 0

```
2
3
6
```


Sample Output 0

```
5
```

13

Explanation 0

The first 10 prime numbers are

$$
\{2,3, \mathbf{5}, 7,11, \mathbf{1 3}, 17,19,23,29\}
$$

we can see that $3^{r d}$ prime number is 5 and $6^{\text {th }}$ prime number is 13

