Project Euler \#25: Ndigit Fibonacci number

This problem is a programming version of Problem 25 from projecteuler.net
The Fibonacci sequence is defined by the recurrence relation:

$$
F_{n}=F_{n-1}+F_{n-2}, \text { where } F_{1}=1 \text { and } F_{2}=1
$$

Hence the first 12 terms will be:

$$
\begin{gathered}
F_{1}=1 \\
F_{2}=1 \\
F_{3}=2 \\
F_{4}=3 \\
F_{5}=5 \\
F_{6}=8 \\
F_{7}=13 \\
F_{8}=21 \\
F_{9}=34 \\
F_{10}=55 \\
F_{11}=89 \\
F_{12}=144
\end{gathered}
$$

The $12^{\text {th }}$ term, F_{12}, is the first term to contain three digits. What is the first term in the Fibonacci sequence to contain N digits?

Input Format

The first line contains an integer T, i.e., number of test cases. Next T lines will contain an integer N.

Constraints

$1 \leq T \leq 5000$
$2 \leq N \leq 5000$

Output Format

Print the values corresponding to each test case.

Sample Input

Sample Output

