Project Euler \#27: Quadratic primes

This problem is a programming version of Problem 27 from projecteuler.net
Euler published the remarkable quadratic formula:

$$
n^{2}+n+41
$$

It turns out that the formula will produce 40 primes for the consecutive values $n=0$ to 39 . However, when $n=40,40^{2}+40+41=40(40+1)+41$ is divisible by 41 , and certainly when $n=41$, $41^{2}+41+41$ is clearly divisible by 41 .

Using computers, the incredible formula $n^{2}-79 n+1601$ was discovered, which produces 80 primes for the consecutive values $n=0$ to 79 . The product of the coefficients, -79 and 1601 , is -126479 .

Considering quadratics of the form:

$$
n^{2}+a n+b, \text { where }|a| \leq N \text { and }|b| \leq N
$$

where $|n|$ is the modulus/absolute value of n

$$
\text { e.g. }|11|=11 \text { and }|-4|=4
$$

Find the coefficients, a and b, for the quadratic expression that produces the maximum number of primes for consecutive values of n, starting with $n=0$.

Note For this challenge you can assume solution to be unique.

Input Format

The first line contains an integer N.

Output Format

Print the value of a and b separated by space.

Constraints

$42 \leq N \leq 2000$
Sample Input

42

Sample Output

```
-1 41
```


Explanation

