Project Euler \#28: Number spiral diagonals

This problem is a programming version of Problem 28 from projecteuler.net
Starting with the number 1 and moving to the right in a clockwise direction a 5 by spiral is formed as follows:

$\mathbf{2 1}$	22	23	24	$\mathbf{2 5}$
20	$\mathbf{7}$	8	$\mathbf{9}$	10
19	6	$\mathbf{1}$	2	11
18	$\mathbf{5}$	4	$\mathbf{3}$	12
$\mathbf{1 7}$	16	15	14	$\mathbf{1 3}$

It can be verified that the sum of the numbers on the diagonals is 101.
What is the sum of the numbers on the diagonals in a $N \times N$, (N is odd) spiral formed in the same way?
As the sum will be huge you have to print the result $\bmod \left(10^{9}+7\right)$

Input Format

The first line contains an integer T, i.e., number of test cases.
Next T lines will contain an integer N.

Constraints

$1 \leq T \leq 10^{5}$
$1 \leq N<10^{18}, \mathrm{~N}$ is odd

Output Format

Print the values corresponding to each test case.

Sample Input

3
5

Sample Output

```
25
101
```

