Project Euler \#31: Coin sums

This problem is a programming version of Problem 31 from projecteuler.net
In England the currency is made up of pound, $\mathbf{£}$, and pence, p, and there are eight coins in general circulation:

$$
1 \mathrm{p}, 2 \mathrm{p}, 5 \mathrm{p}, 10 \mathrm{p}, 20 \mathrm{p}, 50 \mathrm{p}, £ 1(100 \mathrm{p}) \text { and } £ 2(200 \mathrm{p}) .
$$

It is possible to make $£ 2$ in the following way:

$$
1 \times £ 1+1 \times 50 p+2 \times 20 p+1 \times 5 p+1 \times 2 p+3 \times 1 p
$$

How many different ways can $N p$ be made using any number of coins? As the result can be large print answer $\bmod \left(10^{9}+7\right)$

Input Format

The first line contains an integer T, i.e., number of test cases. Next T lines will contain an integer N.

Note: N is given as p and not \mathbf{f}

Constraints

$1 \leq T \leq 10^{4}$
$1 \leq N \leq 10^{5}$

Output Format

Print the values corresponding to each test case.
Sample Input

3
10
15
20

Sample Output

11

22
41

