Project Euler \#46: Goldbach's other conjecture

This problem is a programming version of Problem 46 from projecteuler.net
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a prime and twice a square.

$$
\begin{aligned}
9 & =7+2 \times 1^{2} \\
15 & =7+2 \times 2^{2} \\
21 & =3+2 \times 3^{2} \\
25 & =7+2 \times 3^{2} \\
27 & =19+2 \times 2^{2} \\
33 & =31+2 \times 1^{2}
\end{aligned}
$$

It turns out that the conjecture was false as you'll discover some values can't be represented as a sum of prime and twice a square.
You are given N, print the number of ways N can be represented as a sum of prime and twice a square. Example 15 can be represented in two ways as $15=7+2 \times 2^{2}$ and $15=13+2 \times 1^{2}$

Input Format

The first line contains an integer T, i.e., number of test cases. Next T lines will contain an integer N.

Constraints

$1 \leq T \leq 100$
$9 \leq N<5 \times 10^{5}$
$N \in\{$ odd composite number $\}$

Output Format

Print the values corresponding to each test case.

Sample Input

```
2
9
15
```


Sample Output

