HackerRank

Project Euler #53: Combinatoric selections

This problem is a programming version of Problem 53 from projecteuler.net

There are exactly ten ways of selecting three from five, 12345:

123, 124, 125, 134, 135, 145, 234, 235, 245, and 345

In combinatorics, we use the notation, ${}^5C_3=10$

In general,

$$^nC_r=rac{n!}{r! imes (n-r)!}, ext{ where } r\leq n,n!=n imes n-1 imes n-2 imes \cdots 3 imes 2 imes 1 ext{ and } 0!=1$$

It is not until n=23, that a value exceeds one-million:

 $^{23}C_{10} = 1144066$

How many, not necessarily distinct, values of nC_r , for $1\leq n\leq N$, are greater than K?

Input Format

Input contains two integers N and K.

Constraints

 $2 \leq N \leq 1000 \ 1 \leq K \leq 10^{18}$

Output Format

Print the answer corresponding to the test case.

Sample Input

23 1000000

Sample Output

4