Project Euler \#53: Combinatoric selections

This problem is a programming version of Problem 53 from projecteuler.net
There are exactly ten ways of selecting three from five, 12345:

$$
123,124,125,134,135,145,234,235,245, \text { and } 345
$$

In combinatorics, we use the notation, ${ }^{5} C_{3}=10$
In general,

$$
{ }^{n} C_{r}=\frac{n!}{r!\times(n-r)!}, \text { where } r \leq n, n!=n \times n-1 \times n-2 \times \cdots 3 \times 2 \times 1 \text { and } 0!=1
$$

It is not until $n=23$, that a value exceeds one-million:

$$
{ }^{23} C_{10}=1144066
$$

How many, not necessarily distinct, values of ${ }^{n} C_{r}$, for $1 \leq n \leq N$, are greater than K?

Input Format

Input contains two integers N and K.

Constraints

$2 \leq N \leq 1000$
$1 \leq K \leq 10^{18}$

Output Format

Print the answer corresponding to the test case.
Sample Input

```
231000000
```


Sample Output

4

