Project Euler \#55: Lychrel numbers

This problem is a programming version of Problem 55 from projecteuler.net
If we take 47 , reverse and add, $47+74=121$, which is palindromic.
Not all numbers produce palindromes so quickly. For example,

$$
\begin{gathered}
349+943=1292 \\
1292+2921=4213 \\
4213+3124=7337
\end{gathered}
$$

That is, 349 took three iterations to arrive at a palindrome.
Although no one has proved it yet, it is thought that some numbers, like 196, never produce a palindrome. A number that never forms a palindrome through the reverse and add process is called a Lychrel number. Due to the theoretical nature of these numbers, and for the purpose of this problem, we shall assume that a number is Lychrel until proven otherwise. In addition you are given that for every number below 10^{5}, it will either
(i) become a palindrome in less than 60 iterations, or,
(ii) no one, with all the computing power that exists, has managed so far to map it to a palindrome.

Now we see that a lot of numbers converge to the same palindrome, for example $[19,28,29,37,38,46,47,56,64,65,73,74,82,83,91,92,110,121]$ all converge to 121 , a total of 18 numbers.

Note: For this problem we have assumed palindrome numbers like 55,121 to be non-lychrel in $0^{t h}$ iteration.

Given N, find the palindrome to which maximum numbers $\in[1, N]$ converge. Print the palindrome and the count.

Input Format

Input contains an integer N

Constraints

$100 \leq N \leq 10^{5}$

Output Format

Print the answer corresponding to the test case.

Sample Input

[^0]
[^0]: 130

