Project Euler \#56: Powerful digit sum

This problem is a programming version of Problem 56 from projecteuler.net
A googol $\left(10^{100}\right)$ is a massive number: one followed by one-hundred zeros. 100^{100} is almost unimaginably large: one followed by two-hundred zeros. Despite their size, the sum of the digits in each number is only 1.

Considering natural numbers of the form, a^{b}, where $a, b<N$, what is the maximum digital sum?

Input Format

Input contains an integer N

Constraints

$5 \leq N \leq 200$

Output Format

Print the answer corresponding to the test case.
Sample Input

5

Sample Output

13

Explanation

$4^{4}=256$ and $2+5+6=13$, which is the maximum digital sum for this range.

