HackerRank

Project Euler #56: Powerful digit sum

This problem is a programming version of Problem 56 from projecteuler.net

A googol (10^{100}) is a massive number: one followed by one-hundred zeros. 100^{100} is almost unimaginably large: one followed by two-hundred zeros. Despite their size, the sum of the digits in each number is only 1.

Considering natural numbers of the form, a^b , where a,b < N, what is the maximum digital sum?

Input Format

Input contains an integer N

Constraints

 $5 \le N \le 200$

Output Format

Print the answer corresponding to the test case.

Sample Input

5

Sample Output

13

Explanation

 $\mathbf{4^4} = \mathbf{256}$ and $\mathbf{2+5+6} = \mathbf{13}$, which is the maximum digital sum for this range.