Project Euler \#57: Square root convergents

This problem is a programming version of Problem 57 from projecteuler.net
It is possible to show that the square root of two can be expressed as an infinite continued fraction.

$$
\sqrt{2}=1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\cdots}}}=1.414213 \ldots
$$

By expanding this for the first four iterations, we get:

$$
\begin{gathered}
1+\frac{1}{2}=\frac{3}{2}=1.5 \\
1+\frac{1}{2+\frac{1}{2}}=\frac{7}{5}=1.4 \\
1+\frac{1}{2+\frac{1}{2+\frac{1}{2}}}=\frac{17}{12}=1.41666 \cdots \\
1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2}}}}=\frac{41}{29}=1.41379 \cdots
\end{gathered}
$$

The next three expansions are $\frac{99}{70}, \frac{239}{169}$, and $\frac{577}{408}$, but the eighth expansion, $\frac{1393}{985}$, is the first example where the number of digits in the numerator exceeds the number of digits in the denominator.

Given N. In the first N expansions, print the iteration numbers where the fractions contain a numerator with more digits than denominator.

Input Format

Input contains an integer N

Constraints

$8 \leq N \leq 10^{4}$

Output Format

Print the answer corresponding to the test case.

Sample Input

Sample Output

8
13

