HackerRank

Project Euler #58: Spiral primes

This problem is a programming version of Problem 58 from projecteuler.net

Starting with 1 and spiralling anticlockwise in the following way, a square spiral with side length 7 is formed.

37	36	35	34	33	32	31
38	17	16	15	14	13	3 0
39	18	5	4	3	12	29
40	19	6	1	2	11	28
41	2 0	7	8	9	10	27
42	21	22	23	24	25	26
43	44	45	46	47	48	49

It is interesting to note that the odd squares lie along the bottom right diagonal, but what is more interesting is that 8 out of the 13 numbers lying along both diagonals are prime; that is, a ratio of $8/13 \approx 62\%$.

If one complete new layer is wrapped around the spiral above, a square spiral with side length 9 will be formed. If this process is continued, what is the side length of the square spiral for which the ratio of primes along both diagonals first falls below N%?

Input Format

Input contains an integer ${\it N}$

Constraints

$$8 \le N \le 60$$

Output Format

Print the answer corresponding to the test case.

Sample Input

Sample Output

5

60