Project Euler \#64: Odd period square roots

This problem is a programming version of Problem 64 from projecteuler.net
All square roots are periodic when written as continued fractions and can be written in the form:

$$
\sqrt{N}=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots}}}
$$

For example, let us consider $\sqrt{23}$:

$$
\sqrt{23}=4+\sqrt{23}-4=4+\frac{1}{\frac{1}{\sqrt{23}-4}}=4+\frac{1}{1+\frac{\sqrt{23}-3}{7}}
$$

If we continue we would get the following expansion:

$$
\sqrt{23}=4+\frac{1}{1+\frac{1}{3+\frac{1}{1+\frac{1}{8+\cdots}}}}
$$

The process can be summarised as follows:

$$
\begin{array}{lll}
a_{0}=4, \frac{1}{\sqrt{23}-4} & =\frac{\sqrt{23}+4}{7} & =1+\frac{\sqrt{23}-3}{7} \\
a_{1}=1, \frac{7}{\sqrt{23}-3} & =\frac{7(\sqrt{23}+3)}{14} & =3+\frac{\sqrt{23}-3}{2} \\
a_{2}=3, \frac{2}{\sqrt{23}-3} & =\frac{2(\sqrt{23}+3)}{14} & =1+\frac{\sqrt{23}-4}{7} \\
a_{3}=1, \frac{7}{\sqrt{23}-4} & =\frac{7(\sqrt{23}+4)}{7} & =8+\sqrt{23}-4 \\
a_{4}=8, \frac{1}{\sqrt{23}-4} & =\frac{\sqrt{23}+4}{7} & =1+\frac{\sqrt{23}-3}{7} \\
a_{5}=1, \frac{7}{\sqrt{23}-3} & =\frac{7(\sqrt{23}+3)}{14} & =3+\frac{\sqrt{23}-3}{2} \\
a_{6}=3, \frac{2}{\sqrt{23}-3} & =\frac{2(\sqrt{23}+3)}{14} & =1+\frac{\sqrt{23}-4}{7} \\
a_{7}=1, \frac{7}{\sqrt{23}-4} & =\frac{7(\sqrt{23}+4)}{7} & =8+\sqrt{23}-4
\end{array}
$$

It can be seen that the sequence is repeating. For conciseness, we use the notation $\sqrt{23}=[4 ;(1,3,1,8)]$, to indicate that the block $(1,3,1,8)$ repeats indefinitely.

The first ten continued fraction representations of (irrational) square roots are:
$\sqrt{2}=[1 ;(2)]$, period $=1$
$\sqrt{3}=[1 ;(1,2)]$, period $=2$
$\sqrt{5}=[2 ;(4)]$, period $=1$
$\sqrt{6}=[2 ;(2,4)]$, period $=2$
$\sqrt{7}=[2 ;(1,1,1,4)]$, period $=4$
$\sqrt{8}=[2 ;(1,4)]$, period $=2$
$\sqrt{10}=[3 ;(6)]$, period $=1$
$\sqrt{11}=[3 ;(3,6)]$, period $=2$
$\sqrt{12}=[3 ;(2,6)]$, period $=2$
$\sqrt{13}=[3 ;(1,1,1,1,6)]$, period $=5$
Exactly four continued fractions, for $x \leq 13$, have an odd period.
How many continued fractions for $x \leq N$ have an odd period?

Input Format

Input contains an integer N

Constraints

$10 \leq N \leq 30000$

Output Format

Print the answer corresponding to the test case.

Sample Input

13

Sample Output

