Project Euler \#65: Convergents of e

This problem is a programming version of Problem 65 from projecteuler.net
The square root of 2 can be written as an infinite continued fraction.

$$
\sqrt{2}=1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2+\cdots}}}}
$$

The infinite continued fraction can be written, $\sqrt{2}=[1 ;(2)]$, (2) indicates that 2 repeats ad infinitum. In a similar way, $\sqrt{23}=[4 ;(1,3,1,8)]$.

It turns out that the sequence of partial values of continued fractions for square roots provide the best rational approximations. Let us consider the convergents for $\sqrt{2}$.

$$
\begin{gathered}
1+\frac{1}{2}=\frac{3}{2} \\
1+\frac{1}{2+\frac{1}{2}}=\frac{7}{5} \\
1+\frac{1}{2+\frac{1}{2+\frac{1}{2}}}=\frac{17}{12} \\
1+\frac{1}{2+\frac{1}{2+\frac{1}{2+\frac{1}{2}}}}=\frac{41}{29}
\end{gathered}
$$

Hence the sequence of the first ten convergents for $\sqrt{2}$ are:

$$
1, \frac{3}{2}, \frac{7}{5}, \frac{17}{12}, \frac{41}{29}, \frac{99}{70}, \frac{239}{169}, \frac{577}{408}, \frac{1393}{985}, \frac{3363}{2378}, \cdots
$$

What is most surprising is that the important mathematical constant,

$$
e=[2 ; 1,2,1,1,4,1,1,6,1, \cdots, 1,2 k, 1, \cdots]
$$

The first ten terms in the sequence of convergents for e are:

$$
2,3, \frac{8}{3}, \frac{11}{4}, \frac{19}{7}, \frac{87}{32}, \frac{106}{39}, \frac{193}{71}, \frac{1264}{465}, \frac{1457}{536}, \cdots
$$

The sum of digits in the numerator of the $10^{\text {th }}$ convergent is $1+4+5+7=17$.
Find the sum of digits in the numerator of the $N^{t h}$ convergent of the continued fraction for e.

Input Format

Input contains an integer N

Constraints

$1 \leq N \leq 30000$

Output Format

Print the answer corresponding to the test case.
Sample Input

10

Sample Output

17

