HackerRank

Project Euler #66: Diophantine equation

This problem is a programming version of Problem 66 from projecteuler.net

Consider quadratic Diophantine equations of the form:

 $x^2 - Dy^2 = 1$

For example, when D = 13, the minimal solution in x is $649^2 - 13 \times 180^2 = 1$. It can be assumed that there are no solutions in positive integers when D is square.

By finding minimal solutions in x for D=2,3,5,6,7, we obtain the following:

 $3^2 - 2 \times 2^2 = 1$ $2^2 - 3 \times 1^2 = 1$ $9^2 - 5 \times 4^2 = 1$ $5^2 - 6 \times 2^2 = 1$ $8^2 - 7 \times 3^2 = 1$

Hence, by considering minimal solutions in x for $D \leq 7$, the largest x is obtained when D = 5.

Find the value of $D \leq N$ in minimal solutions of x for which the largest value of x is obtained.

Input Format

Input contains an integer N.

Constraints

 $7 \le N \le 10^4$

Output Format

Print the answer corresponding to the test case.

Sample Input

7

Sample Output

5

Explanation

Explained in statement.