Project Euler \#73: Counting fractions in
 a range

This problem is a programming version of Problem 73 from projecteuler.net
Consider the fraction, $\frac{n}{d}$, where n and d are positive integers. If $n<d$ and $G C D(n, d)=1$, it is called a reduced proper fraction.

If we list the set of reduced proper fractions for $d \leq 8$ in ascending order of size, we get:

$$
\frac{1}{8}, \frac{1}{7}, \frac{1}{6}, \frac{1}{5}, \frac{1}{4}, \frac{2}{7}, \frac{1}{3}, \frac{\mathbf{3}}{\mathbf{8}}, \frac{\mathbf{2}}{\mathbf{5}}, \frac{\mathbf{3}}{\mathbf{7}}, \frac{1}{2}, \frac{4}{7}, \frac{3}{5}, \frac{5}{8}, \frac{2}{3}, \frac{5}{7}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \frac{7}{8}
$$

It can be seen that there are 3 fractions between $1 / 3$ and $1 / 2$.
How many fractions lie between $\frac{1}{A+1}$ and $\frac{1}{A}$ in the sorted set of reduced proper fractions with denominator less than or equal to D ?

Input Format

The only line of input contains A and D.

Constraints

$1<D<2 \times 10^{6}$
$1<A \leq 100$

Output Format

Output required number of fractions.

Sample Input

```
2 8
```


Sample Output

