Project Euler \#74: Digit factorial chains

This problem is a programming version of Problem 74 from projecteuler.net
The number 145 is well known for the property that the sum of the factorial of its digits is equal to 145 :

$$
1!+4!+5!=1+24+120=145
$$

Perhaps less well known is 169, in that it produces the longest chain of numbers that link back to 169; it turns out that there are only three such loops that exist:

$$
\begin{gathered}
169 \rightarrow 363601 \rightarrow 1454 \rightarrow 169 \\
871 \rightarrow 45361 \rightarrow 871 \\
872 \rightarrow 45362 \rightarrow 872
\end{gathered}
$$

It is not difficult to prove that EVERY starting number will eventually get stuck in a loop. For example,

$$
\begin{gathered}
69 \rightarrow 363600 \rightarrow 1454 \rightarrow 169 \rightarrow 363601(\rightarrow 1454) \\
78 \rightarrow 45360 \rightarrow 871 \rightarrow 45361(\rightarrow 871) \\
540 \rightarrow 145(\rightarrow 145)
\end{gathered}
$$

Starting with 69 produces a chain of five non-repeating terms, but the longest non-repeating chain with a starting number below one million is sixty terms.

For a given length L and limit N print all the integers $\leq N$ which have chain length L

Input Format

First line contains T, followed by T lines.
Each line contains N and L separated by space.

Constraints

$1 \leq T \leq 10$
$10 \leq N \leq 1000000$
$1 \leq L \leq 60$

Output Format

Print the integers separated by space for each testcase. Where there are no such number for a given L, print -1 .

Sample Input

```
10
2217
147 1
2584
265 8
2102
1757
```

292
2734
2614

Sample Output

```
24 42 104 114 140 141
1 2 145
78 87 196 236
4 27 39 72 93 107 117 170 171
0}10101115
24 42 104 114 140 141
0 10 11
-1
78 87 196 236 263
78 87 196 236
```

