Project Euler \#78: Coin partitions

This problem is a programming version of Problem 78 from projecteuler.net
Let $p(n)$ represent the number of different ways in which n coins can be separated into piles. For example, five coins can separated into piles in exactly seven different ways, so $p(5)=7$.

00000				
0000	0			
000	00			
000	0	0		0
00	00	0		0
00	0	0	0	0
0	0	0	0	

How many different ways can N coins be separated into piles?
As answer can be large, print $\%\left(10^{9}+7\right)$

Input Format

First line of the input contains T, which is number of testcases. Each testcase contains N.

Constraints

$1 \leq T \leq 1002 \leq N \leq 6 \times 10^{4}$

Output Format

Print the output corresponding to each testcase on a new line.

Sample Input

2
5
5
6

Sample Output

11

