Project Euler \#88: Product-sum numbers

This problem is a programming version of Problem 88 from projecteuler.net
A natural number, N, that can be written as the sum and product of a given set of at least two natural numbers, $a_{1}, a_{2}, \cdots, a_{k}$, is called a product-sum number:
$N=a_{1}+a_{2}+\cdots+a_{k}=a_{1} \times a_{2} \times \cdots \times a_{k}$.
For example, $6=1+2+3=1 \times 2 \times 3$.
For a given set of size, k, we shall call the smallest N with this property a minimal product-sum number. The minimal product-sum numbers for sets of size, $k=2,3,4,5$, and 6 are as follows.
$k=2: 4=2 \times 2=2+2$
$k=3: 6=1 \times 2 \times 3=1+2+3$
$k=4: 8=1 \times 1 \times 2 \times 4=1+1+2+4$
$k=5: 8=1 \times 1 \times 2 \times 2 \times 2=1+1+2+2+2$
$k=6: 12=1 \times 1 \times 1 \times 1 \times 2 \times 6=1+1+1+1+2+6$
Hence for $2 \leq k \leq 6$, the sum of all the minimal product-sum numbers is $4+6+8+12=30$; note that 8 is only counted once in the sum.

In fact, as the complete set of minimal product-sum numbers for $2 \leq k \leq 12$ is $4,6,8,12,15,16$, the sum is 61 .

What is the sum of all the minimal product-sum numbers for $2 \leq k \leq N$?

Input Format

First and only line contains an integer N.

Constraints

$10 \leq N \leq 2 \times 10^{5}$

Output Format

Print the required answer.
Sample Input

