Project Euler \#99: Largest exponential

This problem is a programming version of Problem 99 from projecteuler.net
Comparing two numbers written in index form like 2^{11} and 3^{7} is not difficult, as any calculator would confirm that $2^{11}=2048<3^{7}=2187$.

However, confirming that $632382^{518061}>519432^{525806}$ would be much more difficult, as both numbers contain over three million digits.

You are given N base exponent pairs, each forming a large number you have to find the $K^{\text {th }}$ smallest number of them. K is 1 -indexed.

Input Format

First line containts an integer N, number of base exponent pairs. Followed by N lines each have two space separated integers B and E, representing base and exponent.
Last line containts an integer K, where $K<=N$

Constraints

$1 \leq N \leq 10^{5}$
$1 \leq K \leq N$
$1 \leq B \leq 10^{9}$
$1 \leq E \leq 10^{9}$
No two numbers are equal.

Output Format

Print the base and exponent in one line separated by space.

Sample Input

```
7
7
11
```

2

Sample Output

```
37
```

