HackerRank

Project Euler #99: Largest exponential

This problem is a programming version of Problem 99 from projecteuler.net

Comparing two numbers written in index form like 2^{11} and 3^7 is not difficult, as any calculator would confirm that $2^{11} = 2048 < 3^7 = 2187$.

However, confirming that $632382^{518061} > 519432^{525806}$ would be much more difficult, as both numbers contain over three million digits.

You are given N base exponent pairs, each forming a large number you have to find the K^{th} smallest number of them. K is 1 - indexed.

Input Format

First line containts an integer N, number of base exponent pairs. Followed by N lines each have two space separated integers B and E, representing base and exponent. Last line containts an integer K, where K <= N

Constraints

 $egin{aligned} &1 \leq N \leq 10^5 \ &1 \leq K \leq N \ &1 \leq B \leq 10^9 \ &1 \leq E \leq 10^9 \ &\text{No two numbers are equal.} \end{aligned}$

Output Format

Print the base and exponent in one line separated by space.

Sample Input

3			
4 7			
3 7			
2 11			
2			

Sample Output

37