Project Euler \#102: Triangle containment

This problem is a programming version of Problem 102 from projecteuler.net
Three distinct points are plotted at random on a Cartesian plane, for which $-1000 \leq x, y \leq 1000$, such that a triangle is formed.

Consider the following two triangles:
$A(-340,495), B(-153,-910), C(835,-947)$
$X(-175,41), Y(-421,-714), Z(574,-645)$
It can be verified that triangle ABC contains the origin, whereas triangle XYZ does not.
You are given co-ordinates of N "random" triangles, find the number of triangles for which the interior contains the origin.

Input Format

First line contains an integer N i.e. number of triangles, followed by N lines each having 6 space separated integers $\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)$ representing a triangle.

Constraints

$1 \leq N \leq 10^{5}$
$-10^{6} \leq x_{i}, y_{i} \leq 10^{6}$

Output Format

Print 1 line, the number of triangles that contain origin.

Sample Input

```
2
-1 -2 1 -2 1 3
-2 -1 -2 1 -1 2
```


Sample Output

