HackerRank

Project Euler #103: Special subset sums: optimum

This problem is a programming version of Problem 103 from projecteuler.net

Let S(A) represent the sum of elements in set A of size n. We shall call it a special sum set if for any two non-empty disjoint subsets, B and C, the following properties are true:

i. $S(B) \neq S(C)$; that is, sums of subsets cannot be equal. ii. If B contains more elements than C then S(B) > S(C).

If S(A) is minimised for a given n, we shall call it an optimum special sum set. The first five optimum special sum sets are given below.

 $n = 1 : \{1\}$ $n = 2 : \{1, 2\}$ $n = 3 : \{2, 3, 4\}$ $n = 4 : \{3, 5, 6, 7\}$ $n = 5 : \{6, 9, 11, 12, 13\}$

It seems that for a given optimum set, $A = \{a_1, a_2, \dots, a_n\}$, the next optimum set is of the form $B = \{b, a_1 + b, a_2 + b, \dots, a_n + b\}$, where b is the "middle" element on the previous row.

By applying this "rule" we would expect the optimum set for n = 6 to be $A = \{11, 17, 20, 22, 23, 24\}$, with S(A) = 117. However, this is not the optimum set, as we have merely applied an algorithm to provide a near optimum set. The optimum set for n = 6 is $A = \{11, 18, 19, 20, 22, 25\}$, with S(A) = 115.

Let's call the sets obtained by the algorithm above continuously the near-optimal sets. What is the near-optimal set of the size N?

Input Format

The only line containing the number N where $1 \leq N \leq 10^6$

Output Format

The only line containing N numbers separated by spaces which are the members of the set in ascending order. As the numbers could be huge output them modulo 715827881.

Sample Input

Sample Output

11 17 20 22 23 24