Project Euler \#103: Special subset sums: optimum

This problem is a programming version of Problem 103 from projecteuler.net
Let $S(A)$ represent the sum of elements in set A of size n. We shall call it a special sum set if for any two non-empty disjoint subsets, B and C, the following properties are true:
i. $S(B) \neq S(C)$; that is, sums of subsets cannot be equal.
ii. If B contains more elements than C then $S(B)>S(C)$.

If $S(A)$ is minimised for a given n, we shall call it an optimum special sum set. The first five optimum special sum sets are given below.

$$
\begin{aligned}
& n=1:\{1\} \\
& n=2:\{1,2\} \\
& n=3:\{2,3,4\} \\
& n=4:\{3,5,6,7\} \\
& n=5:\{6,9,11,12,13\}
\end{aligned}
$$

It seems that for a given optimum set, $A=\left\{a_{1}, a_{2}, \cdots, a_{n}\right\}$, the next optimum set is of the form $B=\left\{b, a_{1}+b, a_{2}+b, \cdots, a_{n}+b\right\}$, where b is the "middle" element on the previous row.

By applying this "rule" we would expect the optimum set for $n=6$ to be $A=\{11,17,20,22,23,24\}$, with $\mathrm{S}(\mathrm{A})=117$. However, this is not the optimum set, as we have merely applied an algorithm to provide a near optimum set. The optimum set for $n=6$ is $A=\{11,18,19,20,22,25\}$, with $S(A)=115$.

Let's call the sets obtained by the algorithm above continuously the near-optimal sets. What is the nearoptimal set of the size N ?

Input Format

The only line containing the number N where $1 \leq N \leq 10^{6}$

Output Format

The only line containing N numbers separated by spaces which are the members of the set in ascending order. As the numbers could be huge output them modulo 715827881.

Sample Input

Sample Output

