HackerRank

Project Euler #104: Pandigital Fibonacci ends

This problem is a programming version of Problem 104 from projecteuler.net

The Generalized Fibonacci sequence is defined by the recurrence relation:

 $G_n = G_{n-1} + G_{n-2}$, where $G_1 = a$ and $G_2 = b$.

It turns out that F_{541} , which contains 113 digits, is the first Fibonacci number for which the last nine digits are 1-9 pandigital (contain all the digits 1 to 9, but not necessarily in order). And F_{2749} , which contains 575 digits, is the first Fibonacci number for which the first nine digits are 1-9 pandigital.

Given that G_n is the first Generalized Fibonacci number for which the first k digits AND the last k digits are 1 - k pandigital, find n.

NOTE For this problem if you don't find a solution with in $n \leq 2 imes 10^6$, print no solution.

Input Format

First line of input contains a, second line contains b and the third line contains k.

Constraints

 $egin{array}{l} 1\leq a\leq b\leq 9\ 1\leq k\leq 9 \end{array}$

Output Format

Print the value n where G_n is the required generalized fibonacci term.

Sample Input

1 1 2

Sample Output

8