Project Euler \#104: Pandigital Fibonacci ends

This problem is a programming version of Problem 104 from projecteuler.net
The Generalized Fibonacci sequence is defined by the recurrence relation:

$$
G_{n}=G_{n-1}+G_{n-2}, \text { where } G_{1}=a \text { and } G_{2}=b
$$

It turns out that F_{541}, which contains 113 digits, is the first Fibonacci number for which the last nine digits are $1-9$ pandigital (contain all the digits 1 to 9 , but not necessarily in order). And F_{2749}, which contains 575 digits, is the first Fibonacci number for which the first nine digits are $1-9$ pandigital.

Given that G_{n} is the first Generalized Fibonacci number for which the first k digits AND the last k digits are $1-k$ pandigital, find n.

NOTE For this problem if you don't find a solution with in $n \leq 2 \times 10^{6}$, print no solution.

Input Format

First line of input contains a, second line contains b and the third line contains k.

Constraints

$1 \leq a \leq b \leq 9$
$1 \leq k \leq 9$

Output Format

Print the value n where G_{n} is the required generalized fibonacci term.

Sample Input

```
1
1
2
```


Sample Output

