Project Euler \#111: Primes with runs

This problem is a programming version of Problem 111 from projecteuler.net
Considering 4-digit primes containing repeated digits it is clear that they cannot all be the same: 1111 is divisible by 11,2222 is divisible by 22 , and so on. But there are nine 4 -digit primes containing three ones: $1117,1151,1171,1181,1511,1811,2111,4111,8111$.

We shall say that $M(n, d)$ represents the maximum number of repeated digits for an n-digit prime where d is the repeated digit; $N(n, d)$ represents the number of such primes; and $S(n, d)$ represents the set of these primes.

So $M(4,1)=3$ is the maximum number of repeated digits for a 4 -digit prime where one is the repeated digit, there are $N(4,1)=9$ such primes, and
$S(4,1)=\{1117,1151,1171,1181,1511,1811,2111,4111,8111\}$. It turns out that for $d=0$, it is only possible to have $M(4,0)=2$ repeated digits, but there are $N(4,0)=13$ such cases.

Determine the set $S(n, d)$ for a given values of n and d.

Input Format

First line contains an integer T denoting the number of test cases.
Each of the following T lines contain two integers n and d.

Constraints

$1 \leq T \leq 20$
$4 \leq n \leq 40$
$0 \leq d \leq 9$

Output Format

For each of T test cases print one line containing all $N(n, d)$ primes that belong to $S(n, d)$ in ascending order.

Sample Input

```
2
4 1
40
```


Sample Output

```
1117 1151 1171 1181 1511 1811 2111 4111 8111
1009 2003 300140014003 4007 5003 5009 6007 7001 8009 9001 9007
```

