Project Euler \#115: Counting block combinations II

This problem is a programming version of Problem 115 from projecteuler.net
A row measuring n units in length has red blocks with a minimum length of m units placed on it, such that any two red blocks (which are allowed to be different lengths) are separated by at least one black square.

Let the fill-count function, $F(m, n)$, represent the number of ways that a row can be filled.
For example, $F(3,29)=673135$ and $F(3,30)=1089155$.
That is, for $m=3$, it can be seen that $n=30$ is the smallest value for which the fill-count function first exceeds one million.

In the same way, for $m=10$, it can be verified that $F(10,56)=880711$ and $F(10,57)=1148904$, so $n=57$ is the least value for which the fill-count function first exceeds one million.

For given m, find the least value of n for which $F(m, n)>X$.

Input Format

First line contains an integer T denoting the number of test cases.
Each of the following T lines contain two integers m and X.

Constraints

$1 \leq T \leq 50$
$1 \leq m, X \leq 10^{18}$

Output Format

For each of T test cases print one line containing a single integer - the answer to a problem.

Sample Input

```
2
31000000
101000000
```


Sample Output

