Project Euler #120: Square remainders

This problem is a programming version of Problem 120 from projecteuler.net

Consider the remainder when $(a-1)^n + (a+1)^n$ is divided by a^e .

For example, if a = 7, e = 2 and n = 3, then $6^3 + 8^3 = 728 \equiv 42 \pmod{49}$, so the remainder is 42. And as n varies, so too will the remainder, but for a = 7 and e = 2 it turns out that the maximum remainder is 42.

HackerRank

Let R(a,e) be the largest remainder when $(a-1)^n + (a+1)^n$ is divided by a^e , among all $n \ge 0$.

Given A and e, find

$\sum_{a=1}^{A} R(a,e)$

Since this value can be very large, output it modulo 10^9+7 .

Input Format

The first line of input contains T, the number of test cases.

Each test case consists of a single line containing two integers, A and e.

Constraints

 $egin{array}{l} 1\leq T\leq 10000\ e\in\{2,3\}\ A\geq 1 \end{array}$

For test cases worth 1/3 of the total score, $A \leq 10^3$. For test cases worth 2/3 of the total score, $A \leq 10^6$. For test cases worth 3/3 of the total score, $A \leq 10^9$.

Note 0^0 is calculated as 1.

Output Format

For each test case, output a single line containing the requested sum modulo $10^9+7.$

Sample Input

1 2 2

Sample Output

2

Explanation

A=2 and e=2, so we want R(1,2)+R(2,2).

R(1,2) is simply 0, because $a^e=1^2=1$, and the remainder of anything when divided by 1 is 0.

R(2,2) is 2, which can be obtained for example with n=4: $1^4+3^4=82\equiv 2 \pmod{4}$

Thus, the answer is 0+2=2, and modulo 10^9+7 this is simply 2.