Project Euler \#122: Efficient exponentiation

This problem is a programming version of Problem 122 from projecteuler.net
The most naive way of computing n^{15} requires fourteen multiplications:
$n \times n \times \cdots \times n=n^{15}$
But using a "binary" method you can compute it in six multiplications:
$n \times n=n^{2}$
$n^{2} \times n^{2}=n^{4}$
$n^{4} \times n^{4}=n^{8}$
$n^{8} \times n^{4}=n^{12}$
$n^{12} \times n^{2}=n^{14}$
$n^{14} \times n=n^{15}$
However it is yet possible to compute it in only five multiplications:
$n \times n=n^{2}$
$n^{2} \times n=n^{3}$
$n^{3} \times n^{3}=n^{6}$
$n^{6} \times n^{6}=n^{12}$
$n^{12} \times n^{3}=n^{15}$
We shall define $m(k)$ to be the minimum number of multiplications to compute n^{k}. For example $m(15)=5$.

For a given k, compute $m(k)$, and also output the sequence of multiplications needed to compute n^{k}. See the sample output for more details.

Input Format

The first line of input contains T, the number of test cases.
Each test case consists of a single line containing a single integer, k.

Constraints

$1 \leq T \leq 500$
$2 \leq k$
Input file \#1: $k \leq 111$.
Input file \#2: $k \leq 275$.

Output Format

For each test case, first output $m(k)$ in a single line. Then output $m(k)$ lines, each of the form n^{\wedge} a * $n^{\wedge} b=n^{\wedge} c$, where a, b and c are natural numbers. You may also output n instead of $n^{\wedge} 1$. Use the * (asterisk/star) symbol, not the letter x or something else.

The sequence of multiplications must be valid. Any valid sequence will be accepted.

Sample Input

```
2
2
1 5
```


Sample Output

```
1
n^1 * n^1 = n^2
5
n * n = n^2
n^2 * n = n^3
n^3 * n^3 = n^ 6
n^6 * n^6 = n^12
n^12 * n^3 = n^15
```


Explanation

The second case, $k=15$, is the example given in the problem statement.
The sample output illustrates that you can use n instead of $n^{\wedge} 1$.

