Project Euler \#127: abc-hits

This problem is a programming version of Problem 127 from projecteuler.net
The radical of $n, \operatorname{rad}(n)$, is the product of distinct prime factors of n. For example, $504=2^{3} \times 3^{2} \times 7$, so $\operatorname{rad}(504)=2 \times 3 \times 7=42$.

For a real number r, we shall define the triplet of positive integers (a, b, c) to be a r-abc-hit if:

- $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, c)=\operatorname{gcd}(b, c)=1$
- $a<b$
- $a+b=c$
- $\operatorname{rad}(a b c)<c^{r}$

We will also call a 1 -abc-hit simply an abc-hit.
For example, $(5,27,32)$ is an abc-hit, because:

- $\operatorname{gcd}(5,27)=\operatorname{gcd}(5,32)=\operatorname{gcd}(27,32)=1$
- $5<27$
- $5+27=32$
- $\operatorname{rad}(4320)=30<32^{1}$

It turns out that abc-hits are quite rare and there are only thirty-one abc-hits for $c<1000$, with $\sum c=12523$.

Given r and L, what is $\sum c$ for all r-abc-hits where $c<L$?

Input Format

The first line of input contains T, the number of test cases.
Each test case consists of a line containing two values, the real number r and the integer L, separated by a space.

Constraints

$1 \leq T \leq 10^{5}$ (Only the last test file has $T=10^{5}$ and is worth half the total points. For all the other test files, $1 \leq T \leq 15$)
$0<r \leq 1.5$ (The input r is written with at most 6 decimal digits behind the decimal point.)
$1 \leq L \leq 10^{5}$

Output Format

For each test case, output a single line containing a single integer, the answer for that test case.
Sample Input

```
2
1.0 1000
1.51000
```


Sample Output

12523

424136

Explanation

The first test case corresponds to the example given in the problem statement.

