Project Euler \#128: Hexagonal tile differences

This problem is a programming version of Problem 128 from projecteuler.net
A hexagonal tile with number 1 is surrounded by a ring of six hexagonal tiles, starting at " 12 o'clock" and numbering the tiles 2 to 7 in an anti-clockwise direction.

New rings are added in the same fashion, with the next rings being numbered 8 to 19,20 to 37,38 to 61, and so on. The diagram below shows the first three rings.

By finding the difference between tile n and each its six neighbours we shall define $\operatorname{PD}(n)$ to be the number of those differences which are prime.

For example, working clockwise around tile 8 the differences are $12,29,11,6,1$, and 13 . So $\mathrm{PD}(8)=3$

In the same way, the differences around tile 17 are $1,17,16,1,11$, and 10 , hence $\mathrm{PD}(17)=2$.
It can be shown that the maximum value of $\operatorname{PD}(n)$ is 3 .
If all of the tiles for which $\mathrm{PD}(n)=3$ are listed in ascending order to form a sequence, the 10 th tile would be 271 .

Find the k th tile in this sequence.

Input Format

The first line of input contains T, the number of test cases.

Each test case consists of a single line containing a single integer, k.

Constraints

Excluding the sample input, there are 8 test files.
For $1 \leq i \leq 8$, the i th test file satisfies:
$1 \leq T, k \leq 10000 \cdot i$

Output Format

For each test case, output a single line containing a single integer, the requested tile.

Sample Input

10

Sample Output

271

Explanation

As mentioned in the problem statement, the 10 th tile is 271 .

