Project Euler \#129: Repunit divisibility

A number consisting entirely of ones is called a repunit. We shall define $R(k)$ to be a repunit of length k; for example, $R(6)=111111$.

Given that n is a positive integer and $\operatorname{gcd}(n, 10)=1$, it can be shown that there always exists a value, k , for which $R(k)$ is divisible by n, and let $A(n)$ be the least such value of k; for example, $A(7)=6$ and $A(41)=5$.

The least value of n for which $A(n)$ first exceeds ten is 17 .
Given n, compute $A(n)$.

Input Format

The first line of input contains T, the number of test cases.
Each test case consists of a single line containing single integer, n.

Constraints

$\operatorname{gcd}(n, 10)=1$
Test files \#1-2:
$1 \leq T \leq 20000$
$1 \leq n \leq 10^{6}$
Test files \#3-6:
$1 \leq T \leq 100$
$1 \leq n \leq 10^{13}$

Output Format

For each test case, output a single line containing a single integer, $A(n)$.

Sample Input

```
2
1
```


Sample Output

As mentioned in the problem statement, $A(7)=6$ and $A(41)=5$.

