Project Euler \#130: Composites with prime repunit property

This problem is a programming version of Problem 130 from projecteuler.net
A number consisting entirely of ones is called a repunit. We shall define $R(k)$ to be a repunit of length k; for example, $R(6)=111111$.

Given that i is a positive integer and $\operatorname{gcd}(i, 10)=1$, it can be shown that there always exists a value, k, for which $R(k)$ is divisible by i, and let $A(i)$ be the least such value of k; for example, $A(7)=6$ and $A(41)=5$.

You are given that for all primes, $p>5$, that $p-1$ is divisible by $A(p)$. For example, when $p=41$, $A(41)=5$, and 40 is divisible by 5 .

However, there are rare composite values for which this is also true; the first five examples being 91,259 , 451, 481, and 703.

Given L and R, print all composite values i in the interval $[L, R]$ for which $\operatorname{gcd}(i, 10)=1$ and $i-1$ is divisible by $A(i)$.

Input Format

The input contains consists of one line containing two integers L and R separated by a space.

Constraints

$R-L \leq 1500000$
$2 \leq L \leq R$
In files \#01-\#05: $R \leq 10000$
In files \#06-\#10: $R \leq 1500000$
In files \#11-\#25: $R \leq 10^{12}$

Output Format

Output all composite values i in the interval $[L, R]$ for which $\operatorname{gcd}(i, 10)=1$ and $i-1$ is divisible by $A(i)$, each in a single line.

Sample Input

```
21000
```


Sample Output

Explanation

$A(91)=6$ and 90 is divisible by 6.

