Project Euler \#131: Prime cube partnership

This problem is a programming version of Problem 131 from projecteuler.net
There are some prime values, p, for which there exists a positive integer, n, such that the expression $n^{3}+n^{2} p$ is a perfect cube.

For example, when $p=19,8^{3}+8^{2} \cdot 19=12^{3}$.
What is perhaps most surprising is that for each prime with this property the value of n is unique, and there are only four such primes below one-hundred.

How many primes below L have this remarkable property?

Input Format

The first line of input contains T, the number of test cases.
Each test case consists of one line containing a single integer, L.

Constraints

$1 \leq T \leq 10^{5}$
$1 \leq L \leq 25 \times 10^{12}$
But for test cases worth 50% of the total score: $1 \leq L \leq 10^{6}$

Output Format

For each test case, output a single line containing a single integer, the answer for that test case.

Sample Input

```
2
5
100
```


Sample Output

