Project Euler \#133: Repunit nonfactors

This problem is a programming version of Problem 133 from projecteuler.net
A number consisting entirely of ones is called a repunit. We shall define $R(k)$ to be a repunit of length k; for example, $R(6)=111111$.

Let us consider repunits of the form $R\left(10^{n}\right)$.
Although $R(10), R(100)$, or $R(1000)$ are not divisible by $17, R(10000)$ is divisible by 17 . Yet there is no value of n for which $R\left(10^{n}\right)$ will divide by 19 . In fact, it is remarkable that $11,17,41$, and 73 are the only four primes below one-hundred that can be a factor of $R\left(10^{n}\right)$.

Given L, find the sum of all the primes below L that will never be a factor of $R\left(10^{n}\right)$.

Input Format

The first line of input contains T, the number of test cases.
Each test case consists of one line containing a single integer L.

Constraints

In all but the last two test files:
$T=1$
$1 \leq L \leq 300000$
In the second-to-last test file:
$1 \leq T \leq 100000$
$1 \leq L \leq 3000000$
In the last test file:
$1 \leq T \leq 100000$
$1 \leq L \leq 30000000$

Output Format

For each test case, output a single line containing a single integer, the answer for that test case.

Sample Input

```
1
100
```


Sample Output

