This problem is a programming version of Problem 134 from projecteuler.net
Consider the consecutive primes $p_{1}=19$ and $p_{2}=23$. It can be verified that 1219 is the smallest number such that the last digits are formed by p_{1} whilst also being divisible by p_{2}.

In fact, with the exception of $p_{1}=3$ and $p_{2}=5$, for every pair of consecutive primes, $p_{2}>p_{1}$, there exist values of n for which the last digits are formed by p_{1} and n is divisible by p_{2}. Let S be the smallest of these values of n.

Given L and R, find $\sum S$ for every pair of consecutive primes with $L \leq p_{1} \leq R$.

Input Format

The first line of input contains T, the number of test cases.
Each test case consists of one line containing two integers, L and R.

Constraints

$1 \leq T \leq 10$
$5 \leq L \leq R \leq 10^{9}$
$|R-L| \leq 10^{6}$
But in test cases worth 50% of the total points, $R \leq 10^{6}$.

Output Format

For each test case, output a single line containing a single integer, the answer for that test case.

Sample Input

```
    1
    520
```


Sample Output

```
4272
```


Explanation

The following are the relevant values in the range $5 \leq p_{1} \leq 20$:

- $p_{1}=5, p_{2}=7, S=35$
- $p_{1}=7, p_{2}=11, S=77$
- $p_{1}=11, p_{2}=13, S=611$
- $p_{1}=13, p_{2}=17, S=1513$
- $p_{1}=17, p_{2}=19, S=817$
- $p_{1}=19, p_{2}=23, S=1219$

Thus, $\sum S=35+77+611+1513+817+1219=4272$

