This problem is a programming version of Problem 136 from projecteuler.net
The positive integers, x, y, and z, are consecutive terms of an arithmetic progression. Given that n is a positive integer, the equation, $x^{2}-y^{2}-z^{2}=n$, has exactly one solution when $n=20$:

$$
13^{2}-10^{2}-7^{2}=20
$$

In fact there are twenty-five values of n below one hundred for which the equation has a unique solution.
How many values of n in the range $[L, R]$ have exactly one solution?

Input Format

The first line of input contains T, the number of test cases.
Each test case consists of one line containing two integers, L and R.

Constraints

In the first few test cases (worth 50% of the total points):
$11 \leq T \leq 100000$
$1 \leq L \leq R \leq 6000000$
In the last few test cases (worth 50% of the total points):
$1 \leq T \leq 10$
$1 \leq L \leq R \leq 10^{12}$
$R-L \leq 1000000$

Output Format

For each test case, output one line containing a single integer, the answer for that test case.

Sample Input

```
1
199
```


Sample Output

```
2 5
```

