Project Euler \#137: Fibonacci golden nuggets

This problem is a programming version of Problem 137 from projecteuler.net
Consider the infinite polynomial series $A_{F}(x)=x F_{1}+x^{2} F_{2}+x^{3} F_{3}+\ldots$, where F_{k} is the $k^{\text {th }}$ term in the Fibonacci sequence: $1,1,2,3,5,8, \ldots$; that is, $F_{k}=F_{k-1}+F_{k-2}, F_{1}=1$ and $F_{2}=1$.

For this problem we shall be interested in values of x for which $A_{F}(x)$ is a positive integer.
Surprisingly

$$
\begin{aligned}
A_{F}(1 / 2) & =(1 / 2) \cdot 1+(1 / 2)^{2} \cdot 1+(1 / 2)^{3} \cdot 2+(1 / 2)^{4} \cdot 3+(1 / 2)^{5} \cdot 5+(1 / 2)^{6} \cdot 8+\cdots \\
& =1 / 2+1 / 4+2 / 8+3 / 16+5 / 32+\ldots \\
& =2
\end{aligned}
$$

The corresponding values of x for the first five natural numbers are shown below.

x	$A_{F}(x)$
$\sqrt{2}-1$	1
$\frac{1}{2}$	2
$\frac{\sqrt{13}-2}{3}$	3
$\frac{\sqrt{89}-5}{8}$	4
$\frac{\sqrt{34}-3}{5}$	5

We shall call $A_{F}(x)$ a golden nugget if x is rational, because they become increasingly rarer; for example, the $10^{\text {th }}$ golden nugget is 74049690 .

Given N, find the $N^{\text {th }}$ golden nugget. Since this number can be very large, output it modulo $10^{9}+7$.

Input Format

The first line of input contains T, the number of test cases.
Each test case consists of a single line containing a single integer, N.

Constraints

$1 \leq T \leq 10^{5}$
In the first test case: $1 \leq N \leq 20$
In the second test case: $1 \leq N \leq 10^{6}$
In the third test case: $1 \leq N \leq 10^{18}$

Output Format
For each test case, output a single line containing a single integer, the answer for that test case.

Sample Input

```
2
1
1 0
```


Sample Output

2
74049690

