HackerRank

Project Euler #138: Special isosceles triangles

This problem is a programming version of Problem 138 from projecteuler.net

Consider the isosceles triangle with base length, b = 16, and legs, L = 17.

By using the Pythagorean theorem it can be seen that the height of the triangle, $h = \sqrt{17^2 - 8^2} = 15$, which is one less than the base length.

With b = 272 and L = 305, h = 273, which is one more than the base length, and this is the second smallest isosceles triangle with the property that $h = b \pm 1$.

Given N, find $\sum L$ for the N smallest isosceles triangles for which $h = b \pm 1$, L are positive integers. Since this sum can be very large, output it modulo $10^9 + 7$.

Input Format

The first line of input contains T, the number of test cases.

Each test case consists of a single line containing a single integer, N.

Constraints

$1 \leq T \leq 10^5$

In the first test case: $1 \le N \le 12$ In the second test case: $1 \le N \le 10^6$ In the third test case: $1 \le N \le 10^{18}$

Output Format

For each test case, output a single line containing a single integer, the answer for that test case.

Sample Input

Sample Output

17 322