Project Euler \#138: Special isosceles
 triangles

This problem is a programming version of Problem 138 from projecteuler.net
Consider the isosceles triangle with base length, $b=16$, and legs, $L=17$.

By using the Pythagorean theorem it can be seen that the height of the triangle, $h=\sqrt{17^{2}-8^{2}}=15$, which is one less than the base length.

With $b=272$ and $L=305, h=273$, which is one more than the base length, and this is the second smallest isosceles triangle with the property that $h=b \pm 1$.

Given N, find $\sum L$ for the N smallest isosceles triangles for which $h=b \pm 1, L$ are positive integers. Since this sum can be very large, output it modulo $10^{9}+7$.

Input Format

The first line of input contains T, the number of test cases.
Each test case consists of a single line containing a single integer, N.

Constraints

$1 \leq T \leq 10^{5}$
In the first test case: $1 \leq N \leq 12$
In the second test case: $1 \leq N \leq 10^{6}$
In the third test case: $1 \leq N \leq 10^{18}$

Output Format

For each test case, output a single line containing a single integer, the answer for that test case.

Sample Input

Sample Output

17
322

