Project Euler \#145: How many reversible numbers are there below one-billion?

This problem is a programming version of Problem 145 from projecteuler.net
Some positive integers n have the property that the sum $[n+\operatorname{reverse}(n)]$ consists entirely of odd (decimal) digits. For instance, $36+63=99$ and $409+904=1313$. We will call such numbers reversible; so $36,63,409$, and 904 are reversible. Leading zeroes are not allowed in either n or reverse (n).

There are 120 reversible numbers below one-thousand.
Given N, how many reversible numbers are there below N ?

Input Format

The first line of input contains T, the number of test cases.
Each test case consists of one line containing a single integer, N.

Constraints

$1 \leq T \leq 10^{5}$
In test file \#1: $1 \leq N \leq 10^{6}$
In test file \#2: $1 \leq N \leq 10^{12}$
In test file \#3: $1 \leq N \leq 10^{18}$

Output Format

For each test case, output a single line containing a single integer, the number of reversible numbers below N.

Sample Input

```
2
1000
948
```


Sample Output

```
1 2 0
1 1 9
```


Explanation

As mentioned in the problem statement, there are 120 reversible numbers below 1000, the largest of which is 948 .

