Project Euler \#146: Investigating a Prime Pattern

This problem is a programming version of Problem 146 from projecteuler.net
The smallest positive integer n for which the numbers $n^{2}+1, n^{2}+3, n^{2}+7, n^{2}+9, n^{2}+13$, and $n^{2}+27$ are consecutive primes is 10 . The sum of all such integers n below one-million is 1242490 .

What is the sum of all integers n below L such that $n^{2}+a_{1}, n^{2}+a_{2}, n^{2}+a_{3}, n^{2}+a_{4}, n^{2}+a_{5}$, $n^{2}+a_{6}$ are consecutive primes?

Input Format

The first line of input contains T, the number of test cases.
The first line of each test case contains a single integer, L. The second line contains six space-separated integers $a_{1}, a_{2}, \ldots, a_{6}$.

Constraints

$1 \leq T \leq 3$
$1 \leq L \leq 10^{7}$
$1 \leq a_{1}<a_{2}<a_{3}<a_{4}<a_{5}<a_{6} \leq 40$

Output Format

For each test case, output one line containing a single integer, the answer for that test case.

Sample Input

```
3
10
13791327
1 1
1 3 7 9 13 27
1000000
13791327
```


Sample Output

```
0
10
1242490
```


Explanation

As mentioned in the problem statement, the first such n is 10 , so there must be no n s below 10 . Thus, the answer for the first test case is 0 .

The third test case is mentioned in the problem statement.

